Problemas de ecuaciones de segundo grado (Rise Above Hate) :
Problema 1
La suma de dos números es 10 y la suma de sus cuadrados es 58. Halle ambos números
Primero se asigna la variable x a una de las incógnitas del problema. Hay dos incógnitas que son ambos números, como el problema no hace distinción entre uno y otro, puede asignarse x a cualquiera de los dos, por ejemplo:
x = Primer número
Como la suma de ambos es 10, entonces necesariamente el otro será:
10 − x = Segundo número
Para entenderlo mejor:
Si entre su amigo y usted tienen $ 1.000, y su amigo tiene $ 400, ¿Cuánto tiene usted?, obviamente, restando el total menos 400, es decir 1.000 − 400 = $ 600. Si su amigo tiene $ x, la cuenta no cambia, sólo que no sabrá el valor sino en función de x, es decir, usted tiene 1.000 − x .
La condición final del problema establece que la suma de los cuadrados de ambos números resulta 58, entonces:
x2 + (10 - x)2 = 58
Esta es la ecuación a resolver
Para hacerlo, aplicamos algunas técnicas de álgebra elemental y luego reordenamos para llegar a la fórmula conocida.
Vemos que la operación indicada entre paréntesis es el cuadrado de un binomio. Es un error muy común que los estudiantes escriban: (a − b)2 = a2 − b2, lo cual es incorrecto. La expresión correcta es: (a − b)2 = a2 − 2•a•b + b2
Desarrollando la ecuación se tiene: x2 + 102 − 2•10•x + x2 = 58 = x2 + 100 − 20•x + x2 = 58
Ordenando y agrupando: 2x2 − 20•x+ 42 = 0;
Dividiendo entre 2 toda la ecuación:
x2 − 10x + 21 = 0
Ahora podemos aplicar la fórmula general para resolver la ecuación de segundo grado y llegaremos a x1 = 7 y x2 = 3.
Veamos, si tenemos
a = 1, b = −10 c = 21

Los números buscados son 7 y 3.
Problema 2
El largo de una sala rectangular es 3 metros mayor que el ancho. Si el ancho aumenta 3 m y el largo aumenta 2 m, el área se duplica. Halle el área original de la sala.
Largo y ancho son diferentes. El problema permite que la variable x se asigne a cualquiera de las dos incógnitas, largo o ancho.
Supongamos que:
x = ancho de la sala
El largo es 3 metros mayor que el ancho, así es que:
x + 3 = largo de la sala.
El área de un rectángulo es la multiplicación de ambos:
x • (x + 3 ) = área de la sala.
Téngase en cuenta que estos son los datos iniciales.
Las condiciones del problema explican que el ancho aumenta en 3 metros y el largo aumenta en 2 metros, así que, luego del aumento quedan:
x + 3 = nuevo ancho de la sala
x + 5 = nuevo largo de la sala
(x + 3 ) • (x + 5) = nueva área de la sala
Según los datos del problema, el área se ha duplicado, así es que planteamos la ecuación:
(x + 3 ) • (x + 5) = 2 • x • (x + 3)
Se efectúan las multiplicaciones: x2 + 5x + 3x + 15 = 2x2 + 6x
Se pasa todo al primer miembro: x2 + 5x + 3x + 15 − 2x2 − 6x = 0
Se simplifica: − x2 + 2x + 15 = 0
Esta es la ecuación a resolver.

Se aplica la fórmula conocida y resulta: x1 = 5 y x2 = −3.
La solución x = −3 se desecha, ya que x es el ancho de la sala y no puede ser negativo. Se toma como única respuesta que el ancho original (x) era 5 metros.
Como el largo inicial x + 3 = 8 metros, el área original era 8m • 5m = 40 m2.
Problema 3
Halle el área y perímetro del triángulorectángulo mostrado. Las dimensiones están en metros 

Como es un triángulo rectángulo se cumple el Teorema de Pitágoras: "El cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos" (c2 = a2 + b2). La hipotenusa es el lado mayor (2x − 5) y los otros dos son los catetos, se plantea entonces la ecuación:
(x + 3)2 + (x − 4)2 = (2x − 5)2
Desarrollando cada binomio al cuadrado, se tiene:
x2 + 2 • 3 • x + 32 + x2 − 2 • 4 • x + 42 = (2x)2 − 2 • (2x) • 5 + 52 = x2 + 6x + 9 + x2 − 8x + 16 = 4x2 − 20x + 25
Reagrupando:
x2 + 6x + 9 + x2 − 8x + 16 − 4x2 + 20x − 25 = 0
Finalmente:
−2x2 + 18x = 0
Es la ecuación a resolver
Las raíces de la ecuación son x1 = 0 y x2 = 9.
La solución x = 0 se desecha, ya que entonces un cateto sería −4 m, lo cual no es posible. La solución es entonces, x = 9. De esta manera, el triángulo queda con catetos 12 metros y 5 metros y con hipotenusa 13 metros.
El área de un triángulo es base por altura dividido 2; la base y la altura son los dos catetos que están a 90° , por lo tanto el área es

El perímetro es la suma de los lados, es decir, P = 12 m + 5 m + 13 m = 30 m.
Dentro de 11 años la edad de Pedro será la mitad del cuadrado de la edad que tenía hace 13 años. Calcula la edad de Pedro.
Edad actual

Edad hace 13 años

Edad dentro de 11 años




Edad actual

Problema 5:
Un jardín rectangular de 50 m de largo por 34 m de ancho está rodeado por un camino de arena uniforme. Halla la anchura de dicho camino si se sabe que su área es 540 m².

(50 + 2x) · (34 + 2x) − 50 · 34 = 540
4x2 + 168x − 540 = 0 x2 + 42x − 135 = 0
x = 3 y x = −45
La anchura del camino es 3 m .
No hay comentarios:
Publicar un comentario