lunes, 2 de abril de 2012


Ecuaciones de segundo grado (Rise Above Hate)

Ecuaciones de segundo grado y una incógnita

Sabemos que una ecuación es una relación matemática entre números y letras. Normalmente se trabaja con ecuaciones en las que sólo hay una letra, llamada incógnita, que suele ser la x.
Resolver la ecuación consiste en encontrar un valor (o varios) que, al sustituirlo por la incógnita, haga que sea cierta la igualdad.
Ese valor es la solución de la ecuación.
Ejemplo: Resolver la ecuación    x − 1 = 0
El número que hace que esa ecuación sea cierta es el 1, ya que 1 – 1 = 0, por lo tanto, 1 es la solución de la ecuación.
Si en la ecuación la incógnita está elevada al cuadrado, decimos que es una ecuación de segundo grado (llamadas también ecuaciones cuadráticas), que se caracterizan porque pueden tener dos soluciones (aunque también una sola, e incluso ninguna).
Cualquier ecuación de segundo grado o cuadrática se puede expresar de la siguiente forma:
                                 ax2 + bx + c = 0
Donde ab y c son unos parámetros que habrá que sustituir por los números reales que corresponda en cada caso particular.

Solución de ecuaciones cuadráticas

Hemos visto que una ecuación cuadrática es una ecuación en su forma ax2 + bx + c = 0, donde  a, b, y c son números reales.

Pero este tipo de ecuación puede presentarse de diferentes formas:
Ejemplos:
9x2 + 6x + 10 = 0        a = 9, b = 6, c = 10
3x2  – 9x  + 0  = 0        a = 3, b = –9, c = 0  (el cero, la c, no se escribe, no está)
–6x2 + 0x + 10 = 0       a = -6, b = 0, c = 10 (el cero equis, la b, no se escribe)
Para resolver la ecuación cuadrática de la forma ax2 + bx + c = 0 (o cualquiera de las formas mostradas), puede usarse cualquiera de los siguientes métodos:

Solución por factorización
En toda ecuación  cuadrática uno  de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, tenemos que convertirlo en un producto de binomios.
Obtenido el producto de binomios, debemos buscar el valor de x de cada uno.
Para hacerlo igualamos a cero cada factor y se despeja para la variable. Igualamos a cero ya que sabemos que si un producto es igual a cero, uno de sus multiplicandos, o ambos, es igual a cero.
Ejemplos
1) Resolver
(x + 3)(2x − 1) = 9
Lo primero es igualar la ecuación a cero.
Para hacerlo, multiplicamos los binomios:
ecuacion_seg_grado023
Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero:
ecuacion_seg_grado024
Ahora podemos factorizar esta ecuación:
(2x − 3)(x + 4) = 0
Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
Si
2x − 3 = 0
2x = 3
ecuacion_seg_grado025
Si
x + 4 = 0
x = −4
Esta misma ecuación pudo haberse presentado de varias formas:
(x + 3)(2x − 1) = 9
2x2 + 5x − 12 = 0
2x2 + 5x = 12
2x2 − 12 = − 5x
En todos los casos la solución por factorización es la misma:

2) Halle las soluciones de
ecuacion_seg_grado026
La ecuación ya está igualada a cero y solo hay que factorizar e igualar sus factores a cero y luego resolver en términos de x:
ecuacion_seg_grado027
Ahora, si
x = 0
o si
x− 4 = 0
4
Algunos ejercicios: Resolver cada ecuación por el método de factorización:
ecuacion_seg_grado028


Soluciones:
ecuacion_seg_grado029


Solución por completación de cuadrados
Se llama método de la completación de cuadrados porque se puede completar un cuadrado geométricamente, y porque en la ecuación cuadrática se pueden realizar operaciones algebraicas que la transforman en una ecuación del tipo:
(ax + b)2 = n
en la cual el primer miembro de la ecuación (ax + b)2, es el cuadrado de la suma de un binomio.
Partiendo de una ecuación del tipo
x2 + bx + c = 0


por ejemplo, la ecuación
x2 + 8x = 48, que también puede escribirse   x2 + 8x − 48 = 0
Al primer miembro de la ecuación (x2 + 8x) le falta un término para completar el cuadrado de la suma de un binomio del tipo
(ax + b)2
Que es lo mismo que
(ax + b) (ax + b)
Que es lo mismo que
ax2 + 2axb + b2
En nuestro ejemplo
x2 + 8x = 48, el 8 representa al doble del segundo número del binomio, por lo tanto, ese número debe ser obligadamente 8 dividido por 2 (8/2), que es igual a 4, y como en el cuadrado de la suma de un binomio ( a2 + 2ab + b2) el tercer término corresponde al cuadrado del segundo término (42 = 16) amplificamos ambos miembros de la ecuación por 16, así tenemos
x2 + 8x + 16 = 48 + 16
x2 + 8x + 16 = 64
la cual, factorizando, podemos escribir como sigue:
(x + 4) (x + 4) = 64
Que es igual a
(x + 4)2 = 64
Extraemos raíz cuadrada de ambos miembros y tenemos
ecuacion_seg_grado033
 Nos queda
x + 4 = 8
Entonces
x = 8 − 4
x = 4
Se dice que "se completó un cuadrado" porque para el primer miembro de la ecuación se logró obtener la expresión (x + 4)2, que es el cuadrado perfecto de un binomio.
Veamos otro ejemplo:
Partamos con la ecuación
x2 + 6x − 16 = 0
Hacemos
x2 + 6x = 16
Luego, a partir de la expresión x2 + 6x (primer miembro de la ecuación) debemos obtener una expresión de la forma (ax + b)2 (cuadrado de la suma de un binomio).
Para encontrar el término que falta hacemos ecuacion_seg_grado030
(Para encontrar dicho término en cualquier ecuación siempre debemos dividir por  2 el valor real del segundo término y el resultado elevarlo al cuadrado).
Ahora, para obtener la expresión completa se suma 9 a ambos miembros de la ecuación:
x2 + 6x = 16
x2 + 6x + 9 = 16 + 9
x2 + 6x  + 9 = 25
factorizamos, y queda
(x +3) (x + 3) = 25
(x + 3)2 = 25


La expresión x2 + 6x se ha completado para formar un cuadrado perfecto, en este caso (x + 3)2, y así la ecuación se resuelve con facilidad:
Extraemos raíz cuadrada
ecuacion_seg_grado034, y queda
x + 3 = 5   y  x + 3 = −5
(pues  52 = 5  y también (−5)2 = 5
Entonces
x = 5 − 3 
x = 2
Y
x = − 5 − 3
x = − 8
 La  ecuación 1 da  x = 2   y la ecuación 2 da  x = −8.
Otro  ejemplo para analizar y estudiar:
Resolver la ecuación: x2 – 6x + 8 = 0
Veamos: Con los términos x2 y –6x podemos formar el cuadrado de binomio (x – 3)2 , pero nos faltaría el término igual a 9, por lo tanto, dejamos las equis (x) a la izquierda y pasamos el 8 a la derecha de la igualdad:
x2 – 6x = − 8 
y sumamos 9 a ambos lados de la igualdad para que a la izquierda se forme el cuadrado de binomio:
¿Cómo encontramos el término que falta?, haciendo
ecuacion_seg_grado031


x2 – 6x = −8       /+9 (sumamos 9 en ambos miembros de la ecuación)
x2 − 6x + 9 = − 8 + 9
(x – 3)2 = 1
Extraemos las raíces cuadradas
ecuacion_seg-grado031


y queda
x – 3 = 1    y   x − 3 = −1


Si
x – 3 = 1
x = 1 + 3
x = 4
Si
 x – 3 = −1
x = −1 + 3
x = 2
Por lo tanto  x1 = 4 y  x2 = 2
Debemos hacer notar que el método de completar cuadrados terminará en lo mismo que la fórmula general, porque es de este método de donde sale dicha fórmula, usada en el método que vemos a continuación.
Ver: PSU: Matematica; Pregunta 028_2010


Solución por la fórmula general

Existe una fórmula que permite resolver cualquier ecuación de segundo grado, que es la siguiente:
Ecuacion_Seg_Grado001
La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−)  antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras ab y  c y sustituir sus valores en la fórmula.
La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, seacompleta o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización.
Ejemplo:  
Resolver la ecuación  2x2 + 3x − 5 = 0
Vemos claramente que a = 2,     b = 3   y     c = −5, así es que:
Ecuacion_Seg_grado002
Ahora, tenemos que obtener las dos soluciones, con el + y con el − :
Ecuacion_Seg_grado003  y también      Ecuacion_Seg_grado004
Así es que las soluciones son Ecuacion_Seg_grado005.
Aquí debemos anotar algo muy importante:
En la fórmula para resolver las ecuaciones de segundo grado aparece la expresión ecuacion_Seg_grado007. Esa raíz cuadrada sólo existirá cuando el radicando (b2 − 4ac) sea positivo o cero.
El radicando b2 – 4ac se denomina discriminante y se simboliza por Δ. El número de soluciones (llamadas también raíces)depende del signo de Δ y se puede determinar incluso antes de resolver la ecuación.
Ecuacion_Seg_Grado008
Entonces, estudiando el signo del discriminante (una vez resuelto), podemos saber el número de soluciones que posee:
Si Δ es positivo, la ecuación tiene dos soluciones.
Si Δ es negativo, la ecuación no tiene solución.
Si Δ es cero, la ecuación tiene una única solución.
En el ejemplo anterior el discriminante era Δ = 49, positivo, por eso la ecuación tenía dos soluciones.
Obtendremos dos soluciones, una cuando sumamos a − b la raíz y lo dividimos por 2a, y otra solución cuando restamos a − b la raíz y lo dividimos por 2a.

Trabajando con ecuaciones de segundo grado

Como lo dijimos al comienzo, cualquier ecuación de segundo grado puede, mediante transformaciones, expresarse en la forma ax2 + bx + c = 0,  donde  a,  y  b  son los coeficientes de los términos  x2  y  x, respectivamente y  c es el término independiente.

Ecuación de segundo grado completa

Una ecuación de segundo grado es completa cuando los tres coeficientes  a,  b,  y  c  son distintos de cero.
Entonces, la expresión de una ecuación de segundo grado completa es 
 ax2 + bx + c = 0.

Ecuación de segundo grado incompleta
Una ecuación de segundo grado es incompleta cuando los términos  b  o  c,  o ambos, son cero.
(Si a = 0, la ecuación resultante sería  bx + c = 0,  que no es una ecuación de segundo grado.)
La expresión de una ecuación de segundo grado incompleta es:
ax2 = 0;   si    b = 0    y    c = 0.
ax2 + bx = 0;    si    c = 0.
ax2 + c = 0;    si    b = 0

No hay comentarios:

Publicar un comentario